
me
.
__

—
:

APPLICATION

MADE TO MEASURE Ergonomics is
more than the study of the physical
environment in which a computer is used: it
also incorporates considerations of the way
we interact with complex software

SOUNDS IN SEQUENCE Our series on
electronic music continues with a look at the
MIDI interface

51

HARDWARE

GOOD AT GAMES The Sega SC3000H is
an inexpensive home micro from a company
famous for arcade games machines

TURNING TURTLE By drawing a variety
of shapes using turtle graphics, we introduce
you to some of the basic commands of the
LOGO language

FROM ELECTROSTATIC PRINTER TO
EXPERT SYSTEM Our weekly glossary

GUIDELINES We consider the three main
user aids available to the programmer:
instructions, ‘help’ pages and ‘signposts’

MACHINE CODE

REGISTER TO REGISTER We investigate:
the variety of registers used by the 6809
processor, and consider some of the
elementary instructions that they use

FOSTERING AN IMAGE Australian
creativity is behind the image-conscious
software company, Melbourne House

: ith
He

Ht rhe

Hf

PROTECTIVE GEAR Our practical course
continues by showing you how to build a
buffer box — a device that protects the
delicate internal mechanism of a computer

023

THE WORKSHOP ANSWERS BACK We __ INSIDE
supply answers to the workshop exercises parse
given last week

BE
Cee

Next Week
© Pocket computers offer
desk-tonp programming power
at calculator prices. We
examine the latest machines -
from Casio.
© Our LOGO series introduces
procedure definition and
editing — the essential
features of any programming
language.
© The equipment to interface
computers to electronic
musical instruments is
available now for many home
micros. We continue our
investigation of modern
musical techniques.

Editor Jim Lennox: Managing Editor Vike Wesley, Art Director David Whelan: Technical Editor Brian
Morris: Production Editor Catherine Cardwell. Art Editor Claudia Zeff; Chief Sub Editor Robert
Pickering: Designer Julian Dorr, Art Assistant Liz Dixon; Editorial Assistant Stephen Malone, Sub Editor Steve
Mann: Researcher Melanie Davis: Contributors Geoff Bains, Harvey Mellor, Mike Curtis, Steve Colwill, Steve
Malone, Rory Forsyth, Richard Pawson, Graham Storrs: Software Consultants Pilot Software City; Group Art
Director Perry Neville, Managing Director Stephen England: Published by Orbis Publishing Lid: Editorial Director
Brian Innes: Project Development Peter Brookesmith: Executive Editor Chris Cooper; Production Controller
Peter Taylor-Medhurst: Circulation Director David Breed: Marketing Director Michael Joyce: Designed and
produced by Bunch Partworks Ltd: Editorial Office 14 Rathbone Place, London WIP 1DE; © APSIF Copenhagen
1984; © Orbis Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Morgan Lid; Printed in Great Britain
by Artisan Press Lid, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50
USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE — Copies are obtainable by placing a regular
order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23.80:
for one year (52 issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street,
Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER
ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BI at cover
price. AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers,
Gordon & Gotch (Aus) Lid, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW
ZEALAND, EUROPE & MALTA: Back numbers are avaliable at cover price from your newsagent. In case of difficulty
write to the address in your country given for binders. South African readers should add Sales tax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE — UK and Eire: Please send £3.95 per binder if you
do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of
£5.00 per binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4B].
MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME
COMPUTER ADVANCED COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA:
For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED
COURSE BINDERS, First Post Pty Ltd, 28 Chandos Street, St. Leonards, NSW 2065. [he binders supplied are
those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from
HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 195, Wellington. SOUTH
AFRICA: Binders are available through any branch of Central Newsagency. [n case of difficulty write to HOME
COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 5/394, Springfield 2197.
Note — Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to
keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at
any time when circumstances dictate, Binders depicted in this publication are those produced for the UK market
only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be
Subject to import duty and/or local taxes, which are not included in the above prices unless stated.

COVER PHOTOGRAPHY BY PAUL CHAVE VALIANT TURTLE COURTESY OF VALIANT DESIGNS LTD, LONDON

s

working environment to the human worker
and draws upon such diverse disciplines as
engineering and psychology, the physical
sciences and physiology. It aims to discover
the principles by which man-machine
systems can be designed to operate
efficiently while preserving the operator’s
health and comfort.

The arrival of personal computers in the home and
workplace makes the implications of ergonomics
relevant to us all. Colour and sound are good
examples of how people’s surroundings affect
their performance at work. Some telephone
switchboards relay music to callers on hold, to
soothe and pacify them while they wait. A green
VDU screen is found to be pleasant and restful by
most computer users, whereas the more
conventional white on black seems harsh and
stressful after a few hours’ use.

Different colour combinations
markedly different responses: blue on yellow is
generally thought an attractive display, while cyan
on green is unpopular. The colour of a room may
affect its users’ moods: yellows are thought to be
‘cheerful’, blues and greens are ‘relaxing’, and the
typical office colour scheme of brown and grey is
‘dismal’.

Such minor differences in preference may seem
unimportant or irrelevant to the home micro
owner, but ergonomists have repeatedly shown
that when people are dissatisfied with their
surroundings (often without knowing that it is the
colour scheme or the background noise that is
affecting them), they are more prone to eyestrain
and backache, and are more likely to take time off
for illness. Computer users commonly suffer from
thoughtless room layouts and job structures. A
major ergonomic study of one office where
operators worked at terminals arranged around
the edge of the room blamed their low efficiency
and high error rate on the social isolation and
stress caused by the layout. They found that when
the workers were placed face to face at low-profile
work stations in the middle of the room the whole
atmosphere was lightened, and the quality of the
work improved significantly.

The introduction of computers has often had a
‘de-skilling’ effect on jobs, making people’s work
undemanding, routine and uninteresting. It is now
a recognised part of the systems analyst’s task to
make sure that the jobs allocated to people after a
computer has been installed are satisfying and
sufficiently demanding. In this analysis the expert

provoke

advice of the ergonomist is needed.
A truly ergonomic system design considers the

human operator as an important system
component with its own operating characteristics
and tolerances. Humanitarian considerations and
financial logic both acknowledge that people's
feelings, perceptions and habits are at least as
important to the efficiency of a system as its
address bus capacity or its clock rate.

The programmer can also benefit from careful —
study of the particular problems and demands of
his job. Programming requires constant care,
logical method and painstaking attention to detail,
yet few people exhibit these disciplines naturally,
and most resist their imposition. This is one reason
why bug-free programs are impossible to
guarantee.

Applying ergonomics to the design of new
programming languages and system design
methods is a fascinating technique, offering many
benefits to programmers and their employers.
Psychologists have spent years studying people as
information-processing devices, and have clear
(though as yet incomplete) ideas of the brain's
memory structures, speeds and capacities. They
can help in designing program control and data
structures that people are comfortable with and
can use naturally or with little training.

Psychological considerations are a_long-
established part of training, selection and
organisation methods within industry, too. Most
significantly, psychologists can ensure that

THE HOME COMPUTER ADVANCED COURSE 521

Keys To Success
In general, the user interface
starts at the keyboard, which
has been subject to many
ergonomic improvements —
from sculpted keys and dished
keyboards to numeric keypads
and LCD displays. But the
keyboard's essential failing —
the inefficiency of the QWERTY
layout — seems ineradicable,
because most people are
reluctant to learn new typing
patterns. Such typically human
emotions and apparent
irrationality are often the major
obstacles to human factors
engineering

IAN McKINNELL

' APPLICATION/ERGONOMICS

designers concentrate first on making the system
fit the people, rather than assuming that the user
will adapt to the system.

In recent years, ergonomists have been studying
the way that people react to complex software —
the so-called ‘user interface’. Through most of the
history of computing, the users have been skilled,
highly motivated professionals prepared to accept
discomfort and inconvenience and willing to
attain a level of technical competence as the price
of computer power. Today’s user, however, is
literally the ordinary person with a very limited
tolerance of temperamental and demanding
machines; if he had to learn a database command
language to use a bank cash dispenser, he would
be likely to take his business to the building
societies instead! And it is not just casual users
who have interface problems. Database systems
that put megabytes of management information
on every office desk are everywhere underused
and misused, because extracting the information
from them requires fluency in complex languages
like so. Researchers and users alike hope that the
next generation of natural language ‘front end’
systems will make it possible to communicate with
the database or the financial model in plain
English. In this type of system, the front end will
translate the users input into the system’s
command language, possibly prompting the user
to specify or amplify his requests, and explaining
or expanding the system’s responses.

There are many ways to help the user, including
the provision of ‘help’ facilities (see page 526).
Artificial intelligence research has led to the
development of knowledge-based programs that
can explain how they arrive at decisions, and it is
thought that these techniques could help to create
‘adviser modules’ to help and prompt program
users. This type of ‘intelligent’ software raises a
philosophical question, however: what is a good
explanation, and to whom? The programmer
might want an explanation of the data structures
and the processes involved in a system, while the
business user would prefer a discussion of means
to achieve a commercial end. Such distinctions are
semantic and linguistic problems for the
ergonomists and the computer scientists.
A similarly grey area in the study of the user

interface is known to psychologists as ‘modelling’.
People use mental models (such as national or
racial stereotypes) as a way of filling in gaps in their
knowledge; most of us would confidently predict a
stranger’s appearance, views, personality and
politics simply from knowing his job — civil
servant, say, or conductor (bus or orchestra).
Similarly, people approach computers with
stereotyped ideas about the machines’ power and
behaviour, and may see them as more intelligent
and knowledgeable than humans performing the
same sort of task. When they meet the kind of curt,
impersonal responses that many software
packages make (especially to incorrect inputs),
they may consider the computers rude and
unfriendly, even hostile — judgements that are, of

522 THE HOME COMPUTER ADVANCED COURSE

course, totally inappropriate to computers. This
personalised perception of the machine affects the
whole interaction, often leading to inappropriate
responses on both sides of the console.

Programmers attempting to instil user-
friendliness can exacerbate the problem by
introducing features that make the program seem
more intelligent than it really is. For example,
using cheery prompts like HELLO JOHN, | AM THE
SPIRIT OF THE DATABASE may encourage the user to

reply in kind, often with catastrophic results and
consequent discouragement.

True user-friendliness needs a rather more
skilful approach. It means thinking and caring
about people, and allowing for their complicated
reactions to computers and work; there is more to
ergonomic design than tilting the screen and
painting the disk drives lilac!

Flexible FORTH
People can be frustrated and constrained by received
ideas just as surely as by the design of their physical
environment. FORTH, the language seen by many as a
replacement for BASIC, was invented by astronomer
Charles Moore at Kitts Peak Observatory in Arizona.
Moore was working on controlling telescope
movements using FORTRAN programs, but found
that language too biased towards pure processing
and unsuitable for external control applications.
Writing a new language was his solution to the
problem. FORTH differs from rigidly structured
languages like FORTRAN in allowing the user to
create virtually a new dialect of the language to suit
each new programming task. The price of FORTH’s
flexibility is its starkly unfriendly approach — an
efficient system isn't necessarily a comfortable one to
work with

Working Conditions
Itis generally acknowledged
that people at work are
influenced in their performance
by gross physical factors such
as worktop heights, air
temperature and noise levels.
However, the subtler effects of
colour, light and perception of
space are now being recognised
as equally important aspects of
the work system, especially
where computers are used. A
systems analyst installing a new
system must consider all these
factors, in addition to choosing
the hardware and software

LIZ DIXON

PROTECTIVE GEAR

So far in the course, we have looked at how
the user ports of the Commodore 64 and
BBC Micro work, and designed some
simple input programs. In this article, we
investigate ways of producing an output
from the user port and outline a
comprehensive control network that we will
show you how to build in future instalments. |

In most microprocessor applications the term
‘buffer’ (see page 208) has come to mean a

temporary storage place for data that is being
transferred from one part of a computer system to
another. In analogue electronics, however, the
term is used to describe a circuit that protects one
device from the actions of another. If we wish to
connect and drive electric motors or other
electrical components under control from the user
port then we must protect the delicate internal
circuits of the micro from the components that we
attach to it.

The input/output chip inside your
microcomputer works at voltage levels of 0 and
+5 volts and uses currents measured in a few
milliamps (mA). Therefore, we must ensure that
we don’t put voltages higher than +5 volts on any
of the user port lines, nor draw more than about 30
to 40 mA of current.

In our introductory instalment of this project
(see page 514) we showed you how touching the
bare wires of the user port lead together could
change the contents of the data register. We found
that earthing the register cells in this way didn’t
introduce dangerous voltages or currents to the
system, and therefore no protection for the micro’s
internal circuitry was required. If we wish to
connect other devices, however, then protection
must be included, and this can take several forms.
We may wish only to ensure that no more than
20 mA of current is drawn from any one port pin.
This could be done by using a relay connected to
the user port to switch the output device on and
off, and inserting a resistor in the feed circuit to the
relay. If the circuit operates at +5 volts, and we

require a current of not more than 20 mA, then we
can use Ohm’s Law (voltage = current X
resistance) to calculate the resistance value
needed:
V=IXR
R=V/I
R=5/0.02
R = 250 ohms

Alternatively, the output from a user port pin
could be used to trigger a transistor switch to
complete an external circuit:

The buffer box that we will construct uses the

transistor switching principle to protect the user
port. This is a matter of convenience, as the circuits
for all eight lines are available on a single chip.

Once buffering of the user port has been
achieved we can go on to add a series of modules
to the user port, which will allow us to connect
other devices to it. These modules will make it
possible for us to control the switching of LEDs,
low and high voltage motors and mains relays. We
will then be able to control household devices such

The Go-Between
The buffer box is connected to
the user port of the Commodore
64 or BBC Micro by the lead
described in the last instalment
(see page 514). The box protects
the computer against harmful
input/output current levels. The
LEDs indicate the state of the
user port output lines, and the
plugs and sockets act as on/off
switches on the input lines.

THE HOME COMPUTER ADVANCED COURSE 523

seaail

s
Hes
ea Bu if et ie i

Aue Hu nanatity i iH Bees Hi

iB H if i
Sits

af

| is 3

ff SERRE
a if i fi He gues ae pastas i padi Hea : ue i

Su GHUANEHR suleiiins ith SARA ina Biiuiiis SRUHHBBE: SRR one Rann

as lights, tape recorders, televisions and so on. In
addition, we can add a digital-to-analogue
converter, which will then enable us to drive
decoded seven-segment displays. Because of the
low voltage and current output of the user port we

LED Mounting Holes will also need an external power supply of nine

a ee ee r : volts. As each module is constructed it will be
connected to a common bus, along which the eight
data lines, an earth and a nine volt power line will
be routed. In this way, we can ‘piggy-back’ or
interconnect modules to the system. This then, is
our plan of action for the forthcoming instalments
of the Workshop course.

Building The LED Display

oOo Mounting ee >

POOOSD a

The LEDs will occupy a strip
of veroboard four tracks wide,

each track having 36 holes.
Insert the LEDs as shown,
with the longer legs on the
edge track, allowing four
holes between each. This
should be the same as the
Spacing of the drill holes in
the box; if necessary,
reposition the LEDs. Solder
the legs to the copper tracks,
being careful not to run
solder from one track to the
other. Use a multimeter to
check the resistance between

the two tracks; ifitis zero,
you have bridged the tracks
somehow.

Cut a 20 cm length of the
12- way ribbon cable, and

the coloured wire. Bare and tin
the ends of the wires. Solder
the coloured wire to the edge
track of the board. Now solder
each of the remaining wires
along the other track, each
wire next to an LED leg. Cut
this track in Seven places, so
that each pin and wire pairis
isolated on its own little strip
of track. Once again, test for
bridging between tracks and
across the breaks.

Gently ease the LEDs and
board into the holes in the box,
screw the sockets into their
holes, then sit back and
admire your work while
waiting for the next
instalment, in which we will
show you how to build the

remove three wires, leaving circuit board

a nine-way ribbon including

LED Legs Track Breaks Solder

Data Lines

Ribbon Cable | L Lu > Coloured Stripe

524 THE HOME COMPUTER ADVANCED ‘COURSE

a

Buffer Box

Plugs

Circuit Board

Box Lid

SB seeadaeeis

58

aa r nn Ce : :
Hs Haan He erate i

Q ae i : |
esis at i

i H E E if He

ig ‘ 7 is 3 Hu
A : Baa

beady Hie te i iB
iit Sut

Sockets

Connector

tEDs

i

*

*

Ribbon Cable

‘THE HOME COMPUTER ADVANCED COURSE

é

yu A Wy

ee
\=E

ROSALIND BUCKLAND

525

Words Of Advice
Micropro Wordstar provides a
top-selling example of
command-driven software with
‘on-line help’. The on-screen
help menu can be abbreviated
or removed by the user, but an
enormously detailed Help file .
structure is always available at a
single keypress

As 1 more memory ‘becomes ‘available on
microcomputers, the techniques used to
guide the user through the workings of a
program can become more sophisticated.
Here we _ discuss the design and
implementation of general-purpose ‘help’
routines that may be incorporated into your
own programs.
ee

Memory i is now cheap. The next “generation of
home computers, which may have a minimum of
128 Kbytes of RAM, will leave most of us with far
more memory than even our most ambitious
programs will ever require. Throughout the
history of computing, a shortage of memory has
been the major excuse for failing to provide users
with sufficient instructions, sensible error
messages or on-line help. Now there is no excuse.

There are three main user aids that can be
provided within a program: instructions, ‘help’
pages and ‘signposts’. Instructions take two forms.

_ They can be given in a single block at the
beginning of the program, or they may be supplied
as required throughout the program (as prompts
for user input, for instance). Ideally, both should
be available to the user.

In their simplest form, instructions may simply
be a page — or several pages — of text explaining
in clear English how to use the program. The text

can be held in strings or DATA statements within the
program, and will be displayed when required bya
call to a subroutine written for this purpose. At the
start of the main program, the user is asked if
instructions are needed; if they are, the subroutine
is called. Thereafter, other routines that accept
user input should be tailored so that a specified

526 THE HOME COMPUTER ADVANCED COURSE

input (*?’ is common, or you could use ‘l’) triggers
a call to the instructions subroutine. It is a good
idea to create a standard ‘display instructions’
command, and modify any library input routines
to accept it. Don’t forget to modify any prompts
used in your routines so that ‘Press any key for
more...’ becomes ‘Press any key for more (or “I”
for instructions)’ This will give you a standard
format that will be used in all your programs.

But instructions need not be text-only.
Diagrams may be included, and the instruction
routines can be developed to give examples and
allow the user to practise and learn. Such
instruction routines are common in programs that
run scientific experiments — here the user may be
required to perform a specified task to a particular
level of skill before being allowed to progress to the
main program. Such ‘teaching’ routines are not
easy to develop because they must simulate the

behaviour of the rest of the program, as well as
evaluating the user’s performance. It is well worth
the attempt, however, as designing this type of
routine will give an indication of the problems that
the main program will present to the user.

In a similar fashion, ‘help’ pages may be called
up to explain the operation of particular parts of

) the program. This facility is found in many
_ systems, where it is available to explain the use of |
commands — the Unix operating system, for
example, allows the entire user manual to be
accessed as on-line help! Providing help in your
own programs need be no more difficult than
supplying instructions: at each appropriate point,
simply allow the user to enter a help request
instead of the usual input — when this happens the
program should call the relevant help routine. A
complex program is likely to require a large

IAN McKINNELL

number of help pages, so again a general help
routine is desirable. This may require the user to
input a number to identify the particular help page
required. On disk-based systems, the help pages
may be held on disk as separate files. The help
routine will then create the appropriate file name
from the user’s input, read in the file and display it

- on the screen. |
Both help and instructions routines may well

take up more than just a single page of
information. If this is the case, your display routine
should be designed in such a way that the user is
able to move backwards and forwards through the
pages at will. You should also ensure that the user
can leave the routine at any stage and return to the
exact point at which the main program was left — it

program such commands onto function keys and
display a single-line message to show each key’s
function. It is always good practice to display a

is very frustrating to go through 10 pages of
redundant information each time the instructions
are required! If a prompt had been given, it will
now have been lost so it must be repeated. The
help routine should set a flag that tells the calling
routine that it must go back to the last instruction
before the help call, first clearing the flag.
A common metaphor for user interactions with

complex programs is to think of the user
navigating through a tangled network of logic. The
newcomer to the program will not understand its
structure and can easily become disoriented and
lost. Thus ‘signposts’ are needed to guide the user.
A menuis the clearest example; this operates like a
road sign that shows the possible exits from a
junction. Systems such as Apple’s Macintosh and
Lisa work in a similar way, using icons instead of
menu options.

Some directions are more important than
others. In a command-based system, there may be
dozens of possible commands. However, not all of
these will be relevant or even possible at a given
point in the program. If the number of options is
small, it is useful to display a line or two to explain
what they are. Some options — such as QUIT —
must be available at all times, so it is a good idea to
keep these on permanent display. UNDO, SAVE and
other application-specific commands may also be
constantly available. A common technique is to

signpost that indicates the way out of a program —
this instils confidence in first-time users, whose
major concern is often to find the emergency exit!

Some experimental systems have been
developed that can monitor a user’s performance
and adjust the level of help given accordingly.
Commercial programs with this feature are still a
long way off, but it is possible to use simple
techniques to achieve at least a part of this goal. If
the user is asked to give his or her name each time
the program is run, then a file can be kept of users
and their skill levels. These levels can be calculated
(from the number of times a particular user has
run the program, say, or from the highest score
achieved if the program in question is a game) and
updated at the end of the program run. As the skill
level increases, the type of help and signposting
supplied will change, becoming briefer and less
intrusive. The user might also be asked to choose
the level of help required, as in the Wordstar word
processing package. Ideally, both alternatives
would be used.

Incorporating help can be a valuable guide to
improving a program’s performance. Once a help
routine has been designed (such as the one
provided here) it is a simple matter to modify it to
record which help pages were used and how often
they were needed. This gives a clear indication of
the trouble-spots in the program.

THE HOME COMPUTER ADVANCED COURSE 527

COURTESY OF THE SCIENCE MUSEUM

ENIAC
This computer, for all its
ponderous construction and the
massive power drain of its
vacuum tube logic, brought ©
computing out of the preserve
of electromechanics and into
the electronic age

ELECTROSTATIC PRINTER
Electrostatic is a term that is often used as a
synonym for ‘electrosensitive’, but it is better
employed as a description of so-called ‘laser’
printers that are used in large computing
installations. A laser printer is really a modified
electrostatic photocopier. An electrostatic charge
is applied evenly to the surface of a smooth zinc
drum, and then scanned by a laser beam, which is
switched on and off by the computer. Where the
surface is exposed to the laser beam, the charge is
neutralised. After the drum has been scanned, a
sheet of paper is passed over it and acquires the
electrical image. The paper is then covered in fine
carbon powder. The carbon sticks only to the
charged areas, and is then baked on by a heating
element, producing an ‘electronic painting’ of the
image to be printed. Laser printers can produce an
entire A4 sheet of printing in a few seconds,
irrespective of the amount of text on the page.

_ These devices are falling in cost, but the cheapest is
still around £5,000. Full-colour laser printers are
expected to appear on the market soon.

EMULATOR
An emulatoris a computer system that mimics the
characteristics of another computer. Micro-
computer software, for example, is often
developed on a mainframe to take advantage of
the larger system’s greater storage capacity and
better debugging facilities. If, for example,
Spectrum software is being developed, a
Spectrum emulator must be written for the
mainframe, which then behaves exactly like a
Spectrum microcomputer.

ENIAC
An acronym for Electronic Numerical Integrator
And Computer. ENIAC was designed by John J
Mauchly and J Presper Eckert Jr at the University
of Pennsylvania during the years 1943-1946. It
was a general purpose electronic calculator that
used vacuum tubes (valves) as relays. ENIAC was
originally designed to help with the creation of
ballistics tables during the Second World War,

528 THE HOME COMPUTER ADVANCED COURSE

although it was not completed until the war was
over. Because of its immense size and the amount
of heat generated by the electronic circuits,
ENIAC had to be housed in a large, air-
conditioned room.

EOF
The End Of File indicator is a control character
that is embedded at the end of a file of data to
instruct the operating system to stop searching. It
is mandatory on a cassette-based system, but is
seldom used on disks because the directory file
keeps a record of the length of all disk files.

ERGONOMICS
The science of designing machines to fit in with
human beings, taking into account our physical
and psychological attributes, is called ergonomics.
Physical characteristics are considered when the
external features of the system are designed —
ergonomics is responsible for developments like
detachable keyboards, adjustable screens, high-
definition monitors, etc. | Psychological
considerations have led to an awareness of
concepts such as ‘user-friendliness’, which is a
term that indicates a particular program has been
designed to cater for as many eventualities as
possible.

EXCLUSIVE-OR
The Exclusive-OR operation is one of the
fundamental building blocks of Boolean algebra.
The operation requires two input bits and one
output. The output is 1 if either of the inputs is 1,
but is 0 if both inputs are 0 or both inputs are 1. The
Exclusive-OR operation may therefore be
thought of as a difference tester — the output will
always be true (1) if the inputs are different. An
Exclusive-OR gate may be constructed from two
AND gates, two inverters and an OR gate. Its
operation can be considered as:

Output = (A AND NOT B) OR (B AND
NOT A)

Exclusive-OR is also available as a single operand
in many microprocessors. It compares the
contents of the accumulator with another
specified byte, giving a 1 for each bit position
where the two bytes differ.

EXPERT SYSTEMS
Computer programs written for very specific
applications that previously required the presence
of experts are called expert systems. In an expert
system, the computer terminal acts as a temporary.
substitute for an experienced person. The expert
system takes over detailed tasks and frees the
human’s time for more productive activity, or
allows someone to be assisted at the times when a
human expert cannot be available. Expert systems
can be used for medical diagnosis, the detection of
problems in mechanical and electronic systems,
geological engineering, and computer-aided
design.

ane y

a a =

GOOD AT GAMES
Sega is a Japanese company that is best
known for its coin-operated arcade games
machines, such as Frogger and Zaxxon.
Given this background, a home computer
from Sega should be an excellent games
machine. The SC3000H fits that description
very well.

Sega’s new home computer, the SC3000H, has
been shown at several recent computer
exhibitions, where it has attracted favourable
comment. Although hardly revolutionary in
design or function, using as it does the now-
familiar Z80A processor, it is a well-designed and
easily expandable home computer with a wealth
of available software. As yet, Sega has no UK
distributor, but the SC3000H is expected to cost
around £150.
An attractive, light machine weighing 1.1 kg

(2.4 Ib) the Sega has a black plastic case with white
alphanumeric keys and grey operations keys (for
special functions, Control, Shift, Return, etc.). It
has moulded plastic typewriter-style keys, which
travel about one centimetre when pressed.
The keyboard has a decidedly ‘clicky’ feel to it,
which is possibly a carry-over from the soft rubber
keyboard used on the Japanese version. Overall,

PATPITTE STAT ON

though, the quality of the keyboard is good for a
machine in this price range. As well as the standard
keys, the Sega has one non-programmable
function key, which is used to enter BASIC
keywords, a ‘graph’ key for accessing keyboard
graphics symbols, ‘clear screen’ and insert/delete
keys, and a four-key cursor cluster that is ideal for
games-playing. However, a big drawback is the
absence of graphic symbols on the keys. The ‘soft-
key’ SC3000, which will not be distributed in this
country, has symbols printed on the keys; without
these, operating the SC3000H in Basic is made
more difficult. |

The SC3000H is well-equipped with interfaces.
Two Atari-style joystick ports are located on the
left-hand side, there isa ROM cartridge slot on the
right, and connections at the rear of the machine
include output to a television set, a composite
colour monitor port, DIN-type printer port,
cassette interface and power socket for the nine
volt mains adaptor. Also included is a switchbox
for use with a television set and a Basic cartridge
with a small instruction booklet.

Setting up the Sega is straightforward, which is
just as well as there is little in the way of
documentation to help. A two-page leaflet
describes the connection of the computer to a
television set and to the power supply. A green

THE HOME COMPUTER ADVANCED COURSE 529

CHRIS STEVENS

Nippon Newcomer
Planned to sell at about £150,
the Sega SC3000H is intended
to provide competition for the
Sinclair Spectrum and
Commodore 64. The machine
has a full range of peripherals,
including cassette recorder,
joysticks, and colour printer/
plotter

LED indicates that the machine is switched on, but
the leaflet fails to mention that the Sega will not
function unless a cartridge, holding either Basic or
a game, is inserted into the ROM port. There is no
internal BAsic interpreter, and once the BASIC
cartridge has been loaded the SC3000H is left
with a derisory 515 bytes of user RAM — less
memory than provided by the unexpanded ZX81.
This is a distinct disadvantage in the marketplace,
as it means that the user will need to purchase an
expansion module to use the machine for anything
other than simply running games cartridges.

The manual may also lead to confusion as it
refers to the ‘soft’ keyboard of the SC3000 and
necessitates the user consulting the printed
keyboard diagram to locate any required graphic
symbol. This fault may be corrected on later
versions. The keyboard diagram also shows BASIC
keywords printed on or above many of the keys,
Spectrum-style. These are accessed by holding
down the function key at the same time as the
relevant alphanumeric key. Commands such as
RUN, LOAD, and GOTO, mathematical functions
(ABS, SIN, COS, TAN) and string functions such as
LEFTS, RIGHTS and MIDS may all be accessed in this
way, but again constant reference to the manual is
necessary to find the relevant keys.

In operation, the SC3000H graphics are very
impressive. The display features two screens — the
text screen gives 24 rows of 40 columns in two
colours, while the graphics screen has a resolution
of 256 X 192 pixels and can display 16 colours.
Brightness levels may be adjusted to give up to 210
shades, and up to 32 sprites may be created. The
Sega BASIC, which is similar to Microsoft Extended
BAsic, uses DRAW, COLOR, PAINT and SPRITE
commands for programming graphics. _

The SC3000H also has six sound channels,
which can be addressed via POKE commands or by
using the BAsic commands BEEP and SOUND. A
music cartridge aids the composition of melodies,
although the tunes produced fall short of the
‘synthesiser quality’ claimed in the manual. :

Sega’s arcade experience is reflected in the
quality of its games software. Game graphics are
generally good, although the SC3000H appears to
have difficulty in displaying both text and graphics
at the same time. Visually, the games are very
much like their arcade counterparts, and the high-
quality sound makes them all the more enjoyable.
The Reset key is used in an unusual fashion:
instead of restarting a game, it functions as a toggle
switch to provide a pause in the action.

Sega supplies two different types of joystick, but
neither of these provides fast, smooth movement.
However, the sensibly designed cursor ‘cluster’
allows easy keyboard operation of games
software.

The company markets a good range of
peripheral equipment for the machine, including a
cassette recorder, colour printer/plotter and an
expansion unit. This gives an extra 64 Kbytes of
RAM and has a built-in compact disk drive. The
expected price of this unit is a reasonable £150.

530 THE HOME COMPUTER ADVANCED COURSE ,

Sa Se cat Pee A add CO Peet

CHRIS STEVENS

DEGA SC3000H/HARDWARE

Safari Hunting
’ Hunt fierce jungle animals with
a tranquilising gun

Se
| N N \

__ ue ‘ |
Ni

SEGA SC3000H |

|

Approximately £150
DIMENSIONS

) lth no Z80A, 4MHz

packaged so
.

SK RAM, expandable internally to
48K :
18K ROM, expandabie internally
to 32K
16K video RAM

VICIGUE EG

grams

24 rows of 40 columns Of text:

graphics resolution of 256x192

Congo Bongo is with sprites and 16 colours in 15
Climb treacherous cliffs to | brightness levels

hase after the gorilla. Watch — . chase after the gorilla. Watc INTERFACES
out for falling coconuts and se.
pesky monkeys in this crazy ROM cartridge port, joystick ports
arcade game (2), TV and composite video,

audio, cassette, and printer

LANGUAGES AVAILABLE

BASIC, LOGO

KEYBOARD

64-key typewriter-style with
cursor rose, function key,
graphics and special character
keys

‘DOCUMENTATION =
Two page set-up sheet and the
manual that comes with the
BASIC cartridge. [his little booklet
is fairly thorough, but you are not
told that the machine does
nothing until you load a cartridge.
Ail documentation refers to the
sott-key version of the keyboard,
rather than the keyboard on the
UK machine

This is a pleasant machine with
good graphics and sound, and
well-equipped BASIC. For the
price, itis agood games machine
and beginner's micro

The documentation is abysmal.
8K memory makes It virtually
impossible to program. [he
keyboard should have special
symbols printed on it

as

5 IOI U

Baseball
Go to bat against a range of
Opposition in this realistic
version

The Sega SC3000H is a pleasant machine to
use, and contains some useful features that are
unusual on a micro in this price range. Sega should

a ala take steps to improve the documentation, and the
The software provided for the :
SC3000H has the Kind of keyboard needs to be restyled to include keyword
graphics and sound expected and graphic labels. The major drawback is
from an electronic games undoubtedly the limited user memory; at present
company like Sega. Many ofthe the machine is suitable only for use with Sega’s
games have excellent ‘3-D byes :

games software — anyone wishing to write Sinbad Mystery displays and innovative : 5
Acombination maze-adventure reworking of ‘ standard’ programs will need to expand the internal
game games formats memory or purchase the expansion unit.

THE HOME COMPUTER ADVANCED COURSE 531

ae a

Our introduction to LOGO (see page 506)
examined its development as _ an
educational aid by Seymour Papert. Many
versions of LOGO are now available and here
we discuss ways in which the language’s
turtle graphics can be used to draw
complex shapes with the minimum effort.

The first version of LoGo to appear on
microcomputers was MIT Loco; this is now
regarded as the ‘standard’ version and is
produced by Terrapin Inc for the Apple and
Commodore 64 machines. Logo Computer
Systems Inc (LCSI) produces another version for
the Apple, Atari and Spectrum computers, and
LCSI Loco for the BBC Micro should soon be
available. There are other versions, but these two
are the most widely available. Our example
programs all use MIT Loco; where there are
differences between MIT and LCSI versions,
these will be explained in the ‘Flavours’ box.
_ There is only one way to learn Loco — by
experimenting! We will suggest certain things for
you to try, but the best thing to do is to solve
problems that you have set for yourself.

Once loaded, LOGo is in ‘immediate’ mode and
is ready to receive and obey commands. In most
versions, these commands must be entered in
upper case letters. Type DRAW and you will see
that the screen is divided into two sections (this is
called ‘splitscreen’ mode). The upper section is

sith iss

532 THE HOME COMPUTER ADVANCED COURSE

7

for the graphics; this takes up most of the display
area and in the centre is the ‘turtle’, represented by
a small triangle. The lower section is for text, and
at the moment will simply contain the prompt *?’.

The turtle is an object that we can
communicate with by giving it commands.
Thinking of the turtle as an ‘object’ will make
programming with it easier to understand. The
most important things to be considered are the
turtle’s position, its heading (direction), and
whether the ‘pen’ it carries is down (in which case
it will draw a line as it moves) or up (in which case
the turtle will move without leaving a trace).
Typing DRAW positions the turtle in the centre of
the screen, facing straight upwards with the pen
down. |
Now let’s try giving the turtle a command:

FORWARD 40

The turtle will move 40 units up the screen,
drawing a line as it goes. FORWARD is a turtle
command, and the number 40 is its ‘input’. Some
commands need inputs, while others do not —
DRAW, for example, does not require an mput.
A second turtle command is BACK. BACK 10

instructs the turtle to move back 10 units. So
FORWARD and BACK (each with a number of units
as inputs) change the turtle’s position on the
screen. RIGHT and LEFT, on the other hand, do not
change the turtle’s position but simply rotate it —
that is, they change its heading (direction). These
two commands require an angle of between zero

PAUL CHAVE

and 360 degrees as inputs. Experiment by using
these commands — try drawing some simple
shapes; see what happens if you instruct the turtle
to move a greater distance than the screen size
permits; try using negative numbers as inputs. To
start again with a clear screen, type DRAW. .
When trying out commands, you may find that

the turtle moves into the text section of the
screen, and thus appears to be ‘behind’ the text so
that it can’t be seen. These commands may help:

FULLSCREEN — allows the full screen area to be
used for graphics;

TEXTSCREEN — removes all graphics and leaves
you with text only;

SPLITSCREEN — returns you to splitscreen
mode;

PENUP — allows the turtle to move without
drawing a line;

PENDOWN — the turtle leaves a ‘trail’ as it
moves.

The commands we have discussed so far are all
instructions to make the turtle do your bidding.
But you can also use Loco to get information
back from the turtle. The turtle’s heading is
measured in degrees; a heading of 0 indicates that
the turtle is facing straight upwards, and the
heading is measured clockwise through 360

_ degrees. To find the turtle’s heading, type:

PRINT HEADING

The turtle’s position on the screen is defined in
terms of a co-ordinate system, with its origin at
the centre of the screen (i.e. the turtle begins at a
point with x and y co-ordinates of 0). You can
find the turtle’s position at any time by typing:

PRINT XCOR PRINT YCOR

‘Try out these commands by drawing a shape and
then ascertaining the turtle’s position and the
direction in which it is facing. Use this data to
return the turtle to its starting point.

You may have found that error messages have
appeared in the text area during your experiments
with LOGO commands. If not, then make a
deliberate mistake to see what happens. For
example, type:

FORWARDSO

You will see the message:

THERE IS NO PROCEDURE NAMED FORWARD50

The reason for this is that LoGo requires a space
between the command FORWARD and the input 50
So as to avoid confusion with a possible command
called FORWARD50. You may also get an error
message if you have typed a command in lower
case. :

Loco is equipped with a line editor that
enables you to correct instructions if you notice
an error before you press Return. Use the cursor
keys to move along the line to the incorrect text.
To insert characters, simply type them in — the
text to the right of the mistake will move

automatically to accommodate any extra
characters. The delete key removes the character
to the left of the cursor. Once the line is correct,
pressing Return will allow Loco to accept the new
instruction. If you have already pressed Return
before noticing a mistake, typing Control-P will
retrieve the last line for editing. This feature is
equally useful for repeating commands.
Now we can try something a little more

mathematical — for example, a_ square.
Remember that a square has four equal sides and
that its corners are right angles (90 degrees), so
something like this will produce the desired result:

FD 50 RT 90
FD 50 RT 90
FD 50 RT 90
FD 50 RT 90

Notice that we can abbreviate the commands, and
can put more than one command on a single line.

Unfortunately, you may hit a_ technical
problem at this point — your square may look
more like a rectangle. This is because of the
‘aspect ratio’ of your screen — that is, the ratio of
the vertical step size to the horizontal step size.
There is a LOGO command to deal with this: use
-ASPECT followed by a number (the default is 0.8)
to change the aspect ratio until your shape really
is a Square. Now try the following exercises: draw
an equilateral triangle; a pentagon; a hexagon;
various rectangles; a rhombus; a parallelogram —
indeed, anything that takes your fancy! |

You may simplify some of the commands and
reduce the amount of typing by using REPEAT. To
draw the square again, simply type:

REPEAT 4 [FD 50 RT 90]

REPEAT is a command with two inputs. The first is
a number that indicates the number of times LoGo
must do something, and the second is a ‘list’ of the

_ commands to be obeyed. This list must always be
enclosed in square brackets. So our square
example tells Loco that it must repeat the
FORWARD 50 RIGHT 90 sequence four times. Now
try using REPEAT to simplify construction of the
shapes you have already created, and see if you
can produce the star shapes shown in some of our
illustrations.

THE HOME COMPUTER ADVANCED COURSE 533

LOGO Exercises
Can you write procedures to
create these shapes? The
samples shown were drawn
with LCSI LOGO on an Atari

Hexagon

Rectangle

Ten-Pointed Star

Parallelogram IAN McKINNELL

SOUNDS IN
SEQUENCE
In the previous article in the series we saw
how sequencing has become an essential
part of the contemporary musician’s
repertoire. Sequencing is important, not
only to co-ordinate the instruments of the
musician playing live, but also in the studio —
where precise timing is vital in the mixing of
sound. Now we look at a development of
Sequencing: the MIDI interface.

The sequencer has had a dramatic impact on
music-making, in both live performance and
recording studios. But the drawback of the
sequencer is that it can control a range of variables
within only one synthesiser. If a keyboard player
has two synthesisers, one with powerful
sequencing abilities and the other with good
sound, there is no way to connect the two into a
single co-ordinated unit. The problem is worse in
studios that need to co-ordinate a variety of
sounds from several different pieces of equipment.
The purpose of a digital interface for musical
instruments is to make this connection, and put
control of the system in the hands of one, highly
capable machine. MIDIis an attempt to do this ina
standardised format so that any digital system can
control another in the production of music.

The MIDI (Musical Instrument Digital
Interface) was developed after a series of meetings
between the principal Japanese and American
manufacturers of digital instruments. The present
specification was finalised in August 1983. It is
designed as a control circuit to transmit data from
one instrument to another, or from a
microcomputer to an instrument. —

MIDI works on an eight-bit processor. Its
designers had a choice between the two available
means of transmission — parallel or serial. Parallel
transmission provides individual lines so that the
eight bits in each byte of data are sent
simultaneously, and as a result permits a high
transmission rate. Its disadvantage is the extra cost
involved, and the inconvenience of having at least
eight wires cabled to a 25-pin D-type connector.
Serial transmission uses only two lines. On one
line the data bits are sent one after the other; a
second line is provided to enable the receiving
instrument to signal parity errors (see page 187) in
the data stream back to the master instrument or
microcomputer. As a result, serial transmission is
slower than parallel, but it has the advantage of a
simpler connector and is considerably cheaper.

The original motivation behind MIDI was to
provide a control circuit that could enhance
synthesised music and provide some form of pitch

534 THE HOME COMPUTER ADVANCED COURSE

control. Its price had to be within the range of most
home computer owners and individual musicians
using synthesisers and drum machines. Primarily
for these reasons, MIDI transmission is serial.

MIDI transmits asynchronously, along the same
lines as the RS232 interface that is standard for
connecting many microcomputers to modems or
serial printers. When data is_ transmitted
asynchronously, each byte has to be defined for the
receiving instrument. In MIDI, this is done by a
Motorola 6850 ACIA (Asynchronous
Communications Interface Adaptor) chip that
adds two extra bits to each byte from the master
instrument. The first is ‘0’, the start bit, followed by
the eight bits of serial data, and concluded by ‘1’,
the stop bit. This 10-bit serial word is then
transmitted to the receiving instrument where a
second ACIA chip converts it back to eight bits of
real data.

The expensive ACIA chip is protected within
the circuit by being opto-isolated. An opto-
isolator is a device that uses photoelectric cells to
allow two unconnected electrical circuits to
exchange signals yet remain electrically isolated;
voltage ‘surges’ will thus leave the chip
undamaged.

aE EE
E

=

Gliss Bliss
The ‘glissando’ (bending the
musical pitch from one note to

_ another) is easily performed on
a stringed instrument by sliding
the fingers up or down the
fretboard. A synthesiser needs
careful programming to
reproduce this as a ‘slide’ effect,
and not as a series of distinct
notes

MIDI differs from the RS232 interface design
in an important respect. The rate of data
transmission with the RS232 is 1,920 serial words
per second, or 19.2 Kbaud: MIDI is half as fast
again. This does not affect compatibility with
home computers because logic circuitry within the
MIDI itself sets a new clock speed of 3,125 words
per second, or 31.25 Kbaud. This is a relatively
high speed for serial transmission, but arguably it

KEVIN JONES

MUSIC/ APPLICATION |

is not fast enough. We will consider why this may
be so later in this article. |

MIDI is designed to interface with more than a
single receiving instrument. Where more than one
instrument is receiving MIDI instructions, the first
requirement must be that the correct data is sent to
the appropriate instrument — otherwise a drum
machine may end up trying to play a carefully
sequenced melody, and a polyphonic synthesiser
end up reproducing a bass drum pattern on its
middle C. MIDI-compatible instruments are .

expected to have a numerical identification code
or ID. One of the 16 available MIDI channels is
assigned the code, so that only that channel
accepts data for that instrument. The first part ofa
full MIDI transmission is then a status byte that
includes the ID. All the data following this routing —
instruction can then specify how the command
should be interpreted.

The unit, about 100 x 120 x 45 mm (4 x 5 X
2 in) in size, has two five-pin DIN sockets, marked
‘MIDIIN’ and ‘MIDI OUT”. ‘MIDIIN’ accepts all
instructions from a microcomputer or master
synthesiser, and ‘MIDI OUT” transmits the
modified bitstream to the receiving instrument.
Many models also have ‘MIDI THRU’, a second
output socket that simply transmits the original
unmodified bitstream sent to ‘MIDI IN’. This may
then be sent to a second interface. The cable,
which has a maximum length of 15 metres, is fitted
with five-pin DIN plugs, and connects to the back
panel of a microcomputer or master synthesiser.

MIDDLE C
Let us imagine a first-time user of MIDI. He has a
short melody he wishes to try out. The melody
starts on middle C, moves upwards to E, then to
G, and so on. How he instructs this will depend on

_ the type of music software he is using. He may be
using a light pen to dot in the notes on a five-line
stave displayed on the VDU. This stave
arrangement has been used as a standard notation
format in Western music for over four centuries.
He may be entering the information on the
alphanumeric keyboard of his microcomputer,
using some sort of MCL (Music Composition
Language), again with a VDU dispiay. Another
alternative would be playing the notes of the
melody on a music keyboard peripheral. This
keyboard might have no sound of its own, but
would produce one or other of the displays
outlined above. But, however the music is entered,
the MIDI transmission will always be the same: to
start the tune, the first byte — transmitted as a
serial word with its two extra bits from the ACIA
chip — will instruct PLAY / ON CHANNEL 6; the
second byte, MIDDLE C. : |

This minimal instruction will produce the note
middle C from the receiving instrument. And the
synthesiser will continue sounding middle C
unless there is also an instruction to limit its
duration, such as STOP PLAYING / ON CHANNEL 6,
byte one; MIDDLE C, byte two; and ALLOWING FORA
DURATION OF X, byte three. If this second

THE HOME COMPUTER ADVANCED COURSE 535

Proper Form
The 2764 holds and applies

JANOS MARFFY

| to incoming OVS a7

Input/Output Control
The HD6801 processor
handles the basic input/

> output control functions

Two Way Process
The 6116 has an 8K bi-
directional buffer and digital

- sequencing relay. It is also
responsible for interrupt
control’

Internal Interface
The HD61 drives MIDI’s ports,
directs incoming signals and
addresses the ROM and RAM

|
)

instruction is not given, and the rest of the melody.
E, G, etc, is entered without duration parameters,
all of the notes of the melody will continue to
sound. The result will be a sustained chord made
up of the notes of the melody.

Fortunately, even a slight acquaintance with the
stave notation on the VDU will be enough to
indicate that what was intended to be a melody
seems likely to become a chord. And an MCL user
who had made such an error could simply run the
sequence, but this time send a MONOPHONIC

The Musical instrument Digital
interface
The MIDI interface reconciles
the input/output protocols of
the computer and musical
instruments connected to it —
just like any other interface —
thus allowing the instruments to
use the computer’s memory. It
also processes the digitised
sound passed through it,
adding control, sync and timing
information to the synthesiser
input

means one sound as opposed to many
(polyphony). If the receiving synthesiser can
produce only one sound at a time when set to
MONOPHONIC, then the poorly-entered sequence
can be performed as a succession of single notes
only — a tune, rather than a chord. |

Let us suppose that, after some trial and error,
the first-time user has entered his tune accurately,
and the interfaced synthesiser is now playing. The
melody keeps time, and the rhythm — defined by
the sequence of durations — is correct. It should be
noted that so far in our discussion the types of
instruction have been fairly limited. Only two
musical parameters or characteristics have been
called upon — pitch (middle C, E, G, etc.) and
duration. | |

The composer of the melody listens to it a few
times, then decides it sounds rather ‘stiff? — as it is
likely to do while it has only a minimum of
definition. He decides that, instead of the first C
and E occurring one after the other, the pitch of
the C should glide upwards to the start of the E.
This sort of movement is called a glissandoor pitch
bend, and would be characteristic of the way a
person might whistle the tune. In this context, it
might add a touch of jauntiness to the synthesiser’s
performance. So this instruction now replaces the
original instruction for middle C, adding an extra
byte.

This brings us to a simple point concerning

536 THE HOME COMPUTER ADVANCED COURSE

NN ———_

instruction to the synthesiser. Monophony simply —

MIDI interfacing. If the receiving synthesiser has
no facility for producing glissandi (bending pitch),
it cannot carry out this last instruction. It may
perform the middle C as if it were receiving the
original instruction, or it may do something else
entirely. If a MIDI user’s instructions are to
produce a section of polyphonic music, and the
receiving synthesiser is only a monophonic
instrument, it will probably make an
unpredictable selection from the polyphony, and
then perform monophonically. In short, using
MIDI to link a microcomputer to a very basic
synthesiser will not turn it into an expensive
synthesiser like the Fairlight.
These restrictions also apply in reverse. The

receiving instrument may be a superb £10,000
synthesiser, but unless _ sufficient musical
parameters have been defined, and unless the

_ synthesiser’s own controls have been set up as
desired, the result may well be performed with the
musicality of a pocket calculator.

In practice, the second of these two situations is
easily improved. As many parameters as possible
should be set as constants using the synthesiser
controls, and the MIDI instructions should work
within those parameters. This approach is the one
most likely to be adopted by the synthesiser player
whose problems we considered earlier.

So far, we have looked at pitch and duration
characteristics, but MIDI provides for 128
theoretical controls, covering filtering, distortion,

_ ‘white noise’ (all possible frequencies) and “pink
noise’ (mid-range frequencies), each with values
ranging from 0.to 128. This is more than adequate
to deal with the parameters available on most
synthesisers, and it is these controls that will
probably interest microcomputer owners.

This is where the MIDI transmission rate
becomes an issue. We have seen that a very
straightforward command, concerning a single
note and defining only two parameters, used three
serial words. With the 31.25 Kbaud rate, this takes
almost one millisecond. Six-note chords are
common in many types of music: such a chord
would take 5.76 milliseconds to transmit. If we
now started to define this chord further using
MIDI controls, the transmission time becomes
slow enough for the human ear to begin to detect
changes in the sound’s characteristics caused by
delay. These changes are apparent only when
sounds, especially similar sounds, occur together
— but as an audio interface MIDI was designed to
handle simultaneous sounds. — Music,
unfortunately, is a ‘parallel’ medium: as listeners,
we are used to hearing things happen
simultaneously. : |

It is therefore not surprising that MIDI’s serial
transmission has been criticised; parallel
transmission would have done the job better. It
remains to be seen whether MIDI users are
troubled by this failing. At present, the design of
the interface appears to be a compromise between
cost and efficiency, so it is worth remembering that
the present specification may only be the first.

REGISTER TO REGISTER
Our introduction to 6809 machine code
began with a general explanation of the role
of the registers in the functioning of the
microprocessor. Here we look at 6809
registers in greater detail and consider how
they are used for storing and moving data.

We have seen that a register is a memory location
within the processor chip itself, and have discussed
how Assembly language programming involves
manipulating the values stored in the registers and
transferring these values to and from main
memory. We further saw that some registers —
mainly the ones that store and process addresses —
are 16 bits in length, while others are eight bits in
length, and that the various registers perform
different functions.

® Index registers are used to modify the
_ addresses that we use in our program. —

® Stack pointers are used by the processor to
address workspace memory and can be used in
the same way by the programmer for quick
storage and retrieval.
® The program counter holds the address of

- the next instruction, and can be altered by the
programmer in order to transfer control, giving
the Assembly language equivalent of a GOTO
statement. |
® Accumulators are the most frequently used
registers, and are used to perform arithmetical
functions.
® The condition code register contains a |
number of flags representing the state of the
processor (such as whether the last operation
gave a zero result); these flags can be tested in
order to select or loop, giving the Assembly
language equivalent of the IF... THEN structure.

The 6809 processor contains all these registers. As
it is a development of the original Motorola 6800
processor (as is the 6502, which is used in the BBC
Micro as well as many others), there are many
similarities between the Assembly languages used
on both processors. They are not, however,
compatible — code written for one will not run on
the other. Many 6800 programs are source code
compatible, however — an Assembly language
program written for the 6800 may be reassembled
for the 6809 with at least a chance of it running.
But even this small degree of compatibility is not
available for the 6502 (or its later development,
the 6510, which is used in the Commodore 64).
However, the similarities between the processors
at least mean that the task of translating an
Assembly language program into a 6809 version is

ADDRESS FIELD
The hex address of the
location where the machine

code is stored

LABEL FIELD
The symbolic address of the
instruction; can be used as
operand of other instructions
(eg JMP LABEL2, BRA
LABEL1)

MACHINE CODE FIELD
The first byte is the machine

code translation of the TIMER FIELD |

Assembly language op-code; The number of machine
subsequent bytes are the instruction cycles needed to

translated operand execute the instruction

not too difficult and can be a good introduction to
the 6809 for anyone familiar with the 6502. The
6809 contains the following registers:

® Two eight-bit accumulators, known as A and B.
There is no functional difference between them
when used as eight-bit registers, so either may be
used. The fact that there are two of them enables
values to be retained in one accumulator while
work is done in the other. Alternatively, the two
eight-bit accumulators can be treated as a single
16-bit accumulator, a very powerful facility that

allows the processor to carry out 16-bit arithmetic
directly. Because of this, the 6809 is sometimes
referred to as a pseudo-16-bit processor, but this is
not really the case and it is better to think of it as
being an advanced eight-bit processor. When the
two accumulators are used together, they are
referred to as the 16-bit D register.
@ There are two index registers, referred to as X
and Y. Again, there is no functional difference
between them: either may be used in any situation.
There is one slight operational difference,
however, in that some instructions using the Y
register will translate into two-byte instructions, as
opposed to one byte for the corresponding X
register instruction, thus making the program a
little longer and slower. Where one index register
only is required, it is therefore better to use X.
@ The 6809 has two stack pointers, S and U. The
processor uses S for all its stack operations.
Although the programmer is free to use S if he or
she wishes, it is always necessary to ensure that the

OPERAND FIELD
The quantity on which the
instruction operates; some
op-codes (eg DECB) require
no operand

OP-CODE FIELD
The Assembly language
instructions; also called the
Instruction Field

Fields Of Study
Assembly language programs
look very different from BASIC
program lists, and, when
printed out by an Assembler
program (which translates
Assembly language into
machine code) can seem
completely baffling. The key to
understanding them is to
concentrate on the columns (or
fields) that interest you (usually
just the label, op-code and
operand fields), and ignore the
rest. The specimen program
shown should help

THE HOME COMPUTER ADVANCED COURSE 537

C7 TiN
1s

f
Ll

operation of the processor is not affected by so
doing — so it is safer to use U. The presence of two
stack pointers makes the 6809 an ideal processor
for use with FORTH.
®@ The use of the X, Y, S and U registers is not
restricted to their designated modes: both S and U
may be used as index registers, for example, and
all four registers can be used for storing and
manipulating 16-bit numbers.
@ The program counter (PC) is a 16-bit register
that is automatically adjusted by the processor so
that it points to the next instruction. The jump
JMP) and branch (BRA) instructions alter the
contents of the program counter and the 6809
allows it to be used as a type of index register. We
shall look more closely at the effects of this later in
the course, but by using addresses relative to the
PC contents instead of specifying some absolute
address stored in X or Y, the programmer can
write true position-independent code. In other
words, properly written programs can be loaded
unaltered into any position in memory and run

from there.
@ The condition code register (CC) has eight bits
that are used independently as flags to signal the
condition of the processor. Instructions such as
branch not equal (BNE) test an individual flag and
cause a change in the flow of control according to
the flag’s condition (one or zero).
There are several instructions that are used simply
for moving data into, out of and between the
various registers; for the purposes of the following
examples, let us suppose that we have reserved a
number of memory locations by using the
Assembler directives FCB and FDB. These are not
instructions to the processor. When the
Assembler translates the Assembly language
program into machine code, it will obey them
immediately and set aside the desired memory
locations for program use. It will not translate the
directives into machine code because they do not
concern the processor. As they resemble
Assembly language operation codes (such as BNE
or JMP) they are sometimes called pseudo-ops;

| ‘Assembler directives’ is a better name as this

explains their function — to direct the functioning
of the Assembler program. If these directives are
labelled, then the label will be translated by the
Assembler into the appropriate address — so we
may have, for example:

NUM1 FCB 0 reserving a single byte that will
- be referred to as NUM1, with:

initial value 0'
NUM2 FCB 0 similar to the above

- NUM3 FDB #A93B ‘reserves two bytes for the 16-
bit number #A93B (#, the
‘hash’ sign, is often used by
6809 Assemblers as a sign
that the number is in
hexadecimal notation

The following instructions load the values stored
in these locations into various registers:

LDA NUM1 _ will load the eight-bit number stored at
the memory location represented by
NUM1 into accumulator A

WA
r¥Y VV?

KEVIN JONES

LDBNUM2 as_ above, loads NUM2 _ into
accumulator B

LDX NUM3
LDY NUM3_ These instructions will load the 16-bit
LDS NUM3 number in NUM into the X, Y, S, U and
LDU NUM3_D registers respectively
LDD NUM3

In a similar way, the eight- or 16-bit contents ofa
register may be stored in a memory location by
using one of:

STA NUM1
STB NUM2
STX NUM3
STY NUM3
STS NUM3 | |
oTU NUM3
STD NUM3 |

Notice that when the accumulator is loaded from
NUM1, you actually copy NUM1 into the
accumulator without changing it; the store
operations function similarly.

The contents of two registers may be exchanged
provided that they are the same size) by using the
EXG instruction. For example:

EXG A,B exchanges the contents of registers A and B |
EXG X,S exchanges the contents of registers X and S

The contents of one may be transferred to another
— for example: TFR Y,U copies the contents of Y
into U. To accomplish this, the two registers must
again be of the same size, both eight-bit or both
16-bit. : |

In order to write a program that actually does
something, let us introduce the ADD instruction,
which will add the contents of a memory location
to the contents of one of the accumulators. It takes
the form:

ADDANUM1 meaning ‘add the contents of memory
location NUM1 into the A register,
leaving the A register containing the
result of the addition’

First we will add the two eight-bit numbers in
NUM1 and NUM2, putting the answer back in NUM1
and ignoring any overflow if their sum is larger
than an eight-bit number. We will then add the two
locations’ contents again, but this time obtaining a
16-bit result in NUMS.
First example: |

LDANUM1 copy first number into A
ADDA NUM2 = add second number
STA NUM1 store answer back in NUM1

Second example:

LDBNUM1 copy first number into B
SEX convert the eight-bit number in B into

a 16-bit number in D :
STD NUM3 copy D into NUM3
LDBNUM2 — copy second number into B
SEX convert it to 16-bit number in D

ADDD NUM3 _ add the first 16-bit number from

NUMS into D

STD NUM3 _ store the answer back in NUM3

THE HOME COMPUTER ADVANCED COURSE 539

Alfred Milgrom, Co-Director and
Publisher, Melbourne House

540 THE HOME COMPUTER ADVANCED COURSE

FOSTERING
AN IMAGE
Melbourne House is a company that is best
known for its adventure software, including
games such as The Hobbit and Mugsy,
Which attract attention for their high
standard of graphics and well-crafted plots.
But the company also produces books, and
its publications are invaluable aids to home
computer programmers.

Melbourne House was founded in 1977 by a
Australian, Fred Milgrom. The launch of the
Sinclair ZX80 alerted Milgrom to the potential
rewards of publishing books on home computing,
and in 1980 Melbourne House produced 30
Programs for the ZX 80. The success of this led to a
series of books devoted to the Sinclair machine,
and the company released its first software
package — Space Invaders, again for the ZX80.

The following year saw the appearance of the
ZX81. Demand for ZX80 books and cassettes
plummeted, and it was only US sales that saved
‘the company from disaster. The lesson was
learned and Melbourne House realised the merits
of diversification. As new machines came onto the
market, the company provided users with books
and software, sales of which were aided by the
poor quality of the user guides supplied with some
home computers.

The immediate success of the Sinclair Spectrum
enabled Melbourne House to produce games
software that exploited the machine’s high
resolution colour graphics and sound. The arcade
game Penetrator sold well, but the company’s
biggest coup was the release of The Hobbit, a
graphic adventure based on the Tolkien novel of
the same name, which won.the Golden Joystick
award for best strategy game of the year. The game
cassette was marketed in a package that also
contained a copy of Tolkien’s book; this was a
condition set by executors of the author’s estate

Book Of The Game
In addition to creating a fun
and exciting game in The
Hobbit, Melbourne House
also includes a copy of JRR
Tolkein’s masterpiece in the
package, a brilliant marketing
ploy

Philip Mitchell, author of The
Hobbit game and Sherlock
Holmes

IAN McKINNELL

and resulted in The Hobbit being sold at a price
three times as high as most Spectrum software
then available. Despite the cost, sales were
extremely good and The Hobbit is now available
on other home machines, including the BBC
Micro and Oric/ Atmos. |

The in-house programmers are based in
Melbourne, Australia. Each team of four
concentrates on one aspect of a game. This means
that more time is spent in game development, but
the policy has brought high sales and customer
loyalty. The company hopes to capitalise on this
loyalty in a drive to sell more books. Paula Byrne,
the company’s publicity manager, points out:
“When people go to buy a book they don’t know
what they want, and so they will probably end up
buying something that is not suitable, which
discourages them from buying other books.’
Melbourne House hopes to combat this confusion
by marking their books as suitable for Beginner,
Intermediate or Advanced readers and by
packaging books and software in the same style, so
that the public identifies quality books with quality
software. To this end, the company includes a
registration card with each of its products, on
which customers are invited to give an opinion of
the quality of their purchase.

The company’s latest game, Mugsy, is claimed
to be the ‘world’s first interactive computer comic
strip’ and allows the player to take control of a
mob of hoodlums in the Chicago of the 1920s. The
graphics are highly detailed and_ beautifully
designed, although the game itself is hardly
complex. Melbourne House is also working on a
Hobbit-style adventure called Sherlock Holmes,
which will be released in late 1984. This is reputed
to be as innovative as The Hobbit was at the time
of its launch and has taken 15 months to develop.
Little has been divulged of the game’s contents,
although it is said to require a good knowledge of
Victorian transport!

Part of the Melbourne House software team

‘i ‘

IMAGES PRODUCED ON THE ARTRON 2000 STUDIO COMPUTER; COURTESY OF GRAPHIC PRODUCTS, LONDON
‘

(EXCLUSIVE DISTRIBUTOR)

